Online Discovery of Feature Dependencies
نویسندگان
چکیده
Online representational expansion techniques have improved the learning speed of existing reinforcement learning (RL) algorithms in low dimensional domains, yet existing online expansion methods do not scale well to high dimensional problems. We conjecture that one of the main difficulties limiting this scaling is that features defined over the full-dimensional state space often generalize poorly. Hence, we introduce incremental Feature Dependency Discovery (iFDD) as a computationally-inexpensive method for representational expansion that can be combined with any online, value-based RL method that uses binary features. Unlike other online expansion techniques, iFDD creates new features in low dimensional subspaces of the full state space where feedback errors persist. We provide convergence and computational complexity guarantees for iFDD, as well as showing empirically that iFDD scales well to high dimensional multi-agent planning domains with hundreds of millions of state-action pairs.
منابع مشابه
Online Processing of English Wh-Dependencies by Iranian EFL Learners
To be able to reach the level of ultimate attainment in the second language, learners need to acquire not only the grammar of the L2 but also the language processing mechanisms involved in the comprehension of sentences in real time. Contrary to its importance, very little is known yet about online L2 processing. This study examines whether advanced Iranian learners of English reactivate disloc...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملA Comparative Review of Hijab Discovery News Coverage in News Media
Purpose: News media play an important role in attitude towards various issues including hijab and hijab discovery. As a result, the purpose of this research was comparative review of hijab discovery news coverage in news media. Methodology: This study in terms of purpose was applied and in terms of implementation method was quantitative. The research population was the hijab discovery news in ...
متن کاملAdaptive Planning for Markov Decision Processes with Uncertain Transition Models via Incremental Feature Dependency Discovery
Solving large scale sequential decision making problems without prior knowledge of the state transition model is a key problem in the planning literature. One approach to tackle this problem is to learn the state transition model online using limited observed measurements. We present an adaptive function approximator (incremental Feature Dependency Discovery (iFDD)) that grows the set of featur...
متن کاملBias Management of Bayesian Network Classifiers
The purpose of this paper is to describe an adaptive algorithm for improving the performance of Bayesian Network Classifiers (BNCs) in an on-line learning framework. Instead of choosing a priori a particular model class of BNCs, our adaptive algorithm scales up the model’s complexity by gradually increasing the number of allowable dependencies among features. Starting with the simple Näıve Baye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011